Total Pages-4

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

4th Semester

MATHEMATICS

PAPER-C8T

RIEMANN INTEGRATION AND SERIES OF FUNCTIONS

Full Marks : 60

Time : 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *four* questions. 4×15

- **1.** (a) State and prove the necessary and sufficient condition for integrability of a bounded function.
 - (b) Show by an example that if |f(x)| is integrable then f(x) may not be integrable. 8+7
- 2. (a) Prove that every continuous function is integrable.

(b) Applying Second Mean Value Theorem of Bonnet's form show that

$$\left| \int_{x'}^{x''} \frac{\sin x}{x} dx \right| \leq \frac{2}{x'} \quad \text{where} \quad 0 \leq x' \leq x'' \quad .$$

(c) Show for
$$k^2 < 1$$
, $\frac{\pi}{6} \le \int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt{\left(1 - x^2\right)\left(1 - k^2 x^2\right)}} \le \frac{\pi}{6} \times \frac{1}{\sqrt{1 - \frac{1}{4} \times k^2}}$. 5+4+6

3. (a) Verify Second Mean Value Theorem of Weierstrass form for the function $x^2 cosx$ in the Interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

(b) Show that
$$4 \le \int_{1}^{3} \sqrt{3 + x^3} dx \le 2\sqrt{30}$$
.

- (c) State and prove the fundamental theorem of integral calculus. \$5+3+7\$
- **4.** (a) Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is convergent.
 - (b) Discuss the convergence of $\int_{0}^{\infty} e^{-x} x^{n-1} dx$.

(c) Show that
$$\int_{0}^{\infty} \frac{\cos x}{\sqrt{1+x^3}} dx$$
 converges absolutely but $\int_{0}^{\infty} \frac{\cos x}{\sqrt{1+2x^2}} dx$ diverges.
5+5+5

C/21/BSC/4th Sem/MTMH-C8T

- 5. (a) Examine the pointwise convergence of the sequence of function $\{f_n\}$ on R defined by $f_n(x) = x^n$.
 - (b) If $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous and $f_n(x) = f\left(x + \frac{1}{n}\right)$. Then prove that $\{f_n\}$ converges uniformly to f on \mathbb{R} .

(c) Let for each
$$n \ge 2$$
, $f_n(x) = \begin{cases} n & \text{if } 0 < n < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$

Obtain $\lim_{n \to \infty} f_n(x)$ in [0,1] and verify that $\lim_{n \to \infty} \int_0^\infty f_n(x) \neq \int_0^1 \lim_{n \to \infty} f_n(x) dx$. 4+4+7

4 + 4 + 7

6. (a) Check the uniform convergence of the following series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{n^2 (1+x^{2n})}, x \in \mathbb{R}$$

(b) Let $f_n(x) = \frac{nx}{1+n^2x^2} - \frac{(n-1)x}{1+(n-1)^2x^2}, x \in [0,1].$

Show that
$$\int_{0}^{1} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \left(\int_{0}^{1} f_n(x) dx \right)$$
; although the series $\sum_{n=1}^{\infty} f_n(x)$ is

not uniformly convergent on [0,1].

(c) For the series $\sum_{n=1}^{\infty} f_n(x)$, where $f_n(x) = n^2 x e^{-n^2 x^2} - (n-1)^2 x e^{-(n-1)^2 x^2}$, $x \in [0,1]$,

show that
$$\sum_{n=10}^{\infty} \int_{0}^{1} f_n(x) dx \neq \int_{0}^{1} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx$$

C/21/BSC/4th Sem/MTMH-C8T

Is the series
$$\sum_{n=1}^{\infty} f_n(x)$$
 uniformly convergent on [0,1]? 3+6+6

- **7.** (a) Expand f(x) = x in Fourier series in the interval $-\pi \le x \le \pi$.
 - (b) Prove that the even function f(x) = |x| in $-\pi \le x \le \pi$ has a cosine series in Fourier's form.

Use Dirichlet's conditions of convergence to show that the series converges to |x|

throughout $-\pi \leq x \leq \pi$.

7 + 8

- 8. (a) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ and discuss its convergence at each end of the interval.
 - (b) Find the series for log (1+x) by integration and hence use Abel's theorem to show that

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \log 2$$
.

(3+2)+(7+3)

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - IV

Subject : MATHEMATICS

Paper : C 8 - T

Riemann Integration and Series of Functions

Full Marks : 60

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

1. Answer any *five* questions :

2×5=10

- (a) Let f:[a,b]→R be a bounded function and P be any partition over [a, b]. Define lower sum L(P,f) and upper sum U(P,f).
- (b) Let $f:[a,b] \to R$ be integrable on [a, b]. If *M* and *m* be respectively the supremum

and infimum of f on [a, b], prove that $m(b-a) \le \int_a^b f dx \le M(b-a)$.

(c) Prove or disprove : if f is differentiable on [0, 1], the relation $\int_0^1 f' dx = f(1) - f(0)$ is not always true. P.T.O.

- (d) A function *f* is continuous in the interval $[a, \infty)$ and $f(x) \to A(\neq 0)$ as $x \to \infty$. Can the integral $\int_{a}^{\infty} f(x) dx$ converge?
- (e) Discuss the convergence of $\int_0^1 e^{-x} \cdot x^{n-1} dx$.
- (f) Give examples of (i) everywhere convergent power series (ii) nowhere convergent power series.
- (g) Let *D* be a finite subset of *R*. If a sequence of real valued functions $\{f_n(x)\}_n$ on *D* converges pointwise to f(x), then show that it also converges uniformly to f(x).
- (h) Let $\sum_{n} f_{n}(x)$ be a series of functions defined on $D(\subset R)$. Explain when this series is said to be uniformly convergent on *D*.
- 2. Answer any *four* questions :

5×4=20

(a) Find the Fourier series of the periodic function f with period 2π , where

 $f(x) = \begin{cases} 0, -\pi < x < a \\ 1, & a \le x \le b \\ 0, & b < x < \pi \end{cases}$ Find the sum of the series at $x = 4\pi + a$ and deduce that

$$\sum_{n=1}^{\infty}\frac{\sin n(b-a)}{n}=\frac{\pi-(b-a)}{2}.$$

- (b) Evaluate $\int_{2}^{5} (x^2 x) dx$ by using the geometric partition of [2, 5] into *n* subintervals.
- (c) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{x^n}{n}$ and discuss its convergence at each end of the interval.
- (d) Show that $\sum_{n=0}^{\infty} x^n$ uniformly on [-a, a] where 0 < a < 1, but

$$\sum_{n=1}^{\infty} \left[\frac{nx}{1+n^2 x^2} - \frac{(n-1)x}{1+(n-1)^2 x^2} \right]$$
 is not uniformly convergent on *R*.

P.T.O.

- (3)
- (e) Show that $\int_{1}^{\infty} x^{m-1} (\log x)^{n} dx$ is convergent if and only if m < 0, n > -1.
- (f) Let *f* be a continuous function on *R* and define $F(x) = \int_{x-1}^{x+1} f(t) dt$, $x \in R$. Show that *F* is differentiable on *R* and compute *F*'.
- 3. Answer any *three* questions :
 - (a) (i) State and prove the fundamental theorem of integral calculus.
 - (ii) If $0 \le x \le 1$ then show that $\frac{x^2}{\sqrt{2}} \le \frac{x^2}{\sqrt{1+x}} \le x^2$ and hence show that

$$\frac{1}{3\sqrt{2}} \le \int_0^1 \frac{x^2}{\sqrt{1+x}} \le \frac{1}{3} \,.$$
 5+5

- (b) (i) If f is a piecewise continuous function or a bounded piecewise monotonic function on [a, b], then f is R—integrable over [a, b]. 3+3
 - (ii) Show that $\int_{\pi}^{\infty} \frac{\sin x}{x} dx$ converges but not absolutely. 4
- (c) (i) Let $\sum_{n} u_n(x)$ be a series of real valued function defined on [a, b] and each $u_n(x)$ is *R*—integrable on [a, b]. If the series converges uniformly to *f* on [a, b], then prove that *f* is *R*—integrable on [a, b] and

$$\int_{a}^{b} \left[\sum_{n=1}^{\infty} u_{n}(x)\right] dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_{n}(x) dx$$

Give an example to show that the condition of uniforms convergence of $\sum_{n} u_n(x)$ is only a sufficient condition but not necessary. 5+2

(ii) Find the region of convergence of the series
$$\sum_{n=1}^{\infty} \frac{x^{3n}}{2^n}$$
. 3

P.T.O.

 $10 \times 3 = 30$

- (4)
- (d) (i) Verify that the function $y = x^3 \sin \frac{1}{x}$ for $x \neq 0$ and y = 0 for x = 0 in the interval $[-\pi, \pi]$ is continuous together with its first derivative but does not satisfy the conditions of Dirchlet's theorem. Can it be expanded into a Fourier series in the interval $[-\pi, \pi]$.
 - (ii) Prove that the integral $\int_0^{\frac{\pi}{2}} \sin x \log \sin x \, dx$ exists and find its value.

5

- (e) (i) Let $f_n(x) = |x|^{1+\frac{1}{n}}, x \in [-1,1]$. Show that $\{f_n\}_n$ is uniformly convergent on [-1, 1]. Also show that each f_n is differentiable on [-1, 1] but the limit function is not differentiable for all x in [-1, 1]. 2+2+2
 - (ii) Prove or disprove : $\{\tan^{-1}nx\}_n$ is not uniformly convergent on any interval which includes zero. 4

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

4th Semester

MATHEMATICS

PAPER-C9T

MULTIVARIATE CALCULUS

Full Marks : 60

Time : 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *four* questions.

4×15

1. (a) Let
$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, xy \neq 0; \\ 0, xy = 0. \end{cases}$$

Show that at (0,0) the double limit exists but the repeated limits do not exist.

(b) Let
$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, x^2 + y^2 \neq 0; \\ 0, x^2 + y^2 = 0. \end{cases}$$

Prove that f is a continuous function of either variable when the other variable is given a fixed value. Is f continuous at (0, 0)? Justify.

- (c) If u = f(x,y), where $x = r \cos \theta$, $y = r \sin \theta$; prove that
 - (i) $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2;$ (ii) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.$

4+4+7

2. (a) When is a function f(x,y) said to be differentiable at a point (x,y)? State the sufficient condition for differentiability of (x,y). Verify the sufficient condition for differentiability of the following function

$$f(x,y) = \begin{cases} x^{2} \sin \frac{1}{x} + y^{2} \sin \frac{1}{y}, x \neq 0, y \neq 0; \\ x^{2} \sin \frac{1}{x}, x \neq 0, y = 0; \\ y^{2} \sin \frac{1}{y}, x = 0, y \neq 0; \\ 0, x = 0, y = 0. \end{cases}$$

(b) Let
$$f(x,y) = \begin{cases} \frac{x^4 + y^4}{x - y}, & x \neq y; \\ 0, & x = y. \end{cases}$$

C/21/BSC/4th Sem/MTMH-C9T

Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0,0). Examine the continuity of f(x,y) at (0, 0).

(c) If H be a homogeneous function in x and y of degree n having continuous first order partial derivatives and $u(x,y) = (x^2 + y^2)^{-n/2}$, show

that
$$\frac{\partial}{\partial x} \left(H \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(H \frac{\partial u}{\partial y} \right) = 0$$
.
(a) Let $f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2}, (x,y) \neq (0,0); \\ 0, (x,y) = (0,0). \end{cases}$
(5)

Show that f has a directional derivative at (0,0) in any direction $\beta = (l,m), l^2 + m^2 = 1$, but f is discontinuous at (0, 0).

(b) If a function f(x,y) defined in a certain domain D of the xy-plane where $(a,b) \in D$ be such that both the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist in some neighbourhood of (a,b) and both $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are differentiable at (a,b), then prove that f_{xy} $(a,b) = f_{yx}$ (a,b).

(c) For the function $f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2}, (x,y) \neq (0,0); \\ 0, (x,y) = (0,0); \end{cases}$

show that $f_{xy}(0,0) = f_{yx}(0,0)$. 4+6+5

4. (a) Prove that the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is $\frac{8abc}{3\sqrt{3}}$.

C/21/BSC/4th Sem/MTMH-C9T

3.

- (b) Find the stationary points of $f(x,y,z) = x^2y^2z^2$ subject to the condition $x^2 + y^2 + z^2 = a^2$ (x, y, z are positive).
- (c) Show that $\iiint (x+y+z)x^2y^2z^2dx \, dy \, dz = \frac{1}{50400}$ taken throughout the tetrahedron bounded by three coordinate planes and x + y + z = 1. 5+4+6
- 5. (a) If E be the region bounded by the circle $x^2 + y^2 2ax 2by = 0$, show that

$$\iint_{E} \sqrt{x(2a-x) + y(2b-y)} dx \ dy = \frac{2\pi}{3} \left(a^{2} + b^{2}\right)^{\frac{3}{2}}.$$
(b) Prove that
$$\iint_{V} \frac{dx \ dy \ dz}{x^{2} + y^{2} + \left(z - \frac{1}{2}\right)^{2}} = \pi \left(2 + \frac{3}{2} \log 3\right)$$
where $V = \{(x, y, z) \in \mathbb{R}^{3} : x^{2} + y^{2} + z^{2} \le 1\}.$

$$7+8$$

- 6. (a) In which direction from the point (1,3,2), the directional derivative of $\phi = 2xz y^2$ is maximum? What is the magnitude of this maximum?
 - (b) Is there a differentiable vector function \vec{v} such that $curl \vec{v} = \vec{r}$? Justify it. Show that $\vec{E} = \frac{\vec{r}}{r^2}$ is irrotational. Find ϕ such that $\vec{E} = -\vec{\nabla}\phi$ and such that $\phi(a) = 0$ where a > 0.
 - (c) If $\vec{A} = (4xy 3x^2z^2)\hat{i} + 2x^2\hat{j} 2x^3z\hat{k}$, prove that $\int_C \vec{A} \cdot d\vec{r}$ is independent of the curve C joining two given points. Is $\vec{A} \cdot d\vec{r}$ an exact differential? If yes, then solve the differential equation $\vec{A} \cdot d\vec{r} = 0$. 3+6+6

C/21/BSC/4th Sem/MTMH-C9T

- 7. (a) Prove $\nabla^2 r^n = n(n+1)r^{n-2}$, where *n* is a constant, $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}, r = |\vec{r}|$.
 - (b) Prove that if $\int_{P_1}^{P_2} \vec{F} \cdot d\vec{r}$ is independent of the path joining any two points

 P_1 and P_2 in a given region, then $\oint \vec{F} \cdot d\vec{r} = 0$ for all closed paths in the region and conversely.

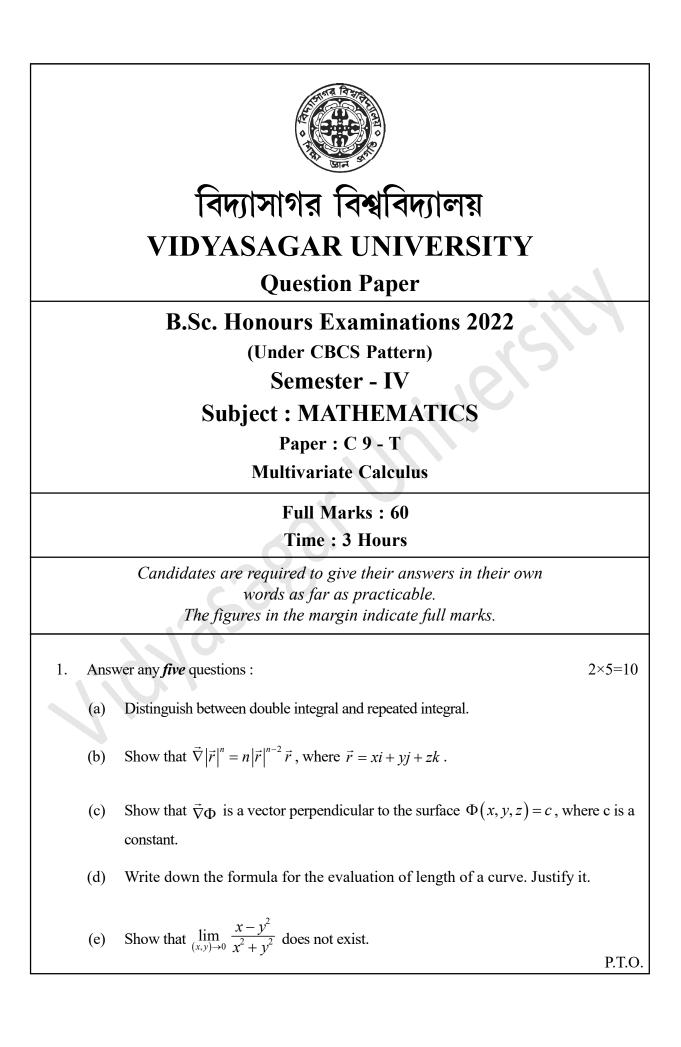
- (c) Verify Green's theorem in the plane for $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy, \text{ where } C \text{ is the boundary of the region}$ enclosed by : $y = \sqrt{x}, y = x^2$ 5+4+6
- **8.** (a) Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force field.

Find the scalar potential. Also evaluate the work done in moving an object in this field from (1,-2,1) to (3,1,4).

(b) Prove
$$\iint_{S} r^5 \hat{n} dS = \iiint_{V} 5r^3 \vec{r} dV$$
, where $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}, r = |\vec{r}|$.

(c) Evaluate by Stokes' theorem $\oint_C \sin z \, dx - \cos x \, dy + \sin y \, dz$, where C is the boundary of the rectangle : $0 \le x \le \pi, 0 \le y \le 1, z = 3$.

C/21/BSC/4th Sem/MTMH-C9T



- (f) Find the equation of the tangent plane to the surface $f(x, y) = x^2 + y^2 + \sin xy$ at the point (0, 2, 4).
- (g) Find the surface area of a sphere by using surface of revolution.
- (h) If \vec{A} and \vec{B} are irrotational, show that $\vec{A} \times \vec{B}$ is irrotational.
- 2. Answer any *four* questions :
 - (a) State and prove the Schwartz's theorem for the equality of f_{xy} and f_{yx} at some point (a, b) of the domain of definition of f(x, y).
 - (b) Express $\int_0^{\frac{\pi}{2}} dx \int_0^{\cos x} x^2 dy$ as a double integral and evaluate it.
 - (c) Prove $\vec{\nabla} \times (\vec{F} \times \vec{G}) = \vec{F} (\vec{\nabla} \cdot \vec{G}) \vec{F} \cdot \vec{\nabla} \cdot \vec{G} + \vec{G} \cdot \vec{\nabla} \cdot \vec{F} \vec{G} (\vec{\nabla} \cdot \vec{F})$, where \vec{F} and \vec{G} are differentiable vector function.
 - (d) Find $\iint_{R} f(x, y) dx dy$, over the region *R* bounded by $x = y^{\frac{1}{3}}$ and $x = \sqrt{y}$ where $f(x, y) = x^{4} + y^{2}$.
 - (e) What is the maximum directional directional derivative of $g(x, y) = y^2 e^{2x}$ at (2, -1) and in the direction of what unit vector does it occur?
 - (f) Let f and g be twice differentiable functions of one variable and let u(x,t) = f(x+ct) + g(x-ct) for a constant c. Show that $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.
- 3. Answer any *three* questions :
 - (a) (i) Find the minimum value of $x^2 + y^2 + z^2$ subject to the constaint $ax + by + cz = 1 (a \neq 0, b \neq 0, c \neq 0).$
 - (ii) Show that $f(x, y, z) = (x^2, y^2, z^2)^{-\frac{1}{2}}$ is harmonic. 8+2

P.T.O.

10×3=30

5×4=20

- (2)
- (b) (i) Let z be a differentiable function of x and y and let $x = r \cos \theta$, $y = r \sin \theta$, Prove that $\frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \frac{\partial z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$. 7

(ii) Prove that
$$f(x, y) = \begin{cases} \frac{x^3 + y^3}{x - y}, & x \neq y \\ 0, & x = y \end{cases}$$
 is not continuous at $(0, 0)$. 3

(c) (i) Prove that
$$\iiint \frac{dxdydz}{x^2 + y^2 + (z-2)^2} = \pi \left(2 - \frac{3}{2}\log 3\right)$$
, extended over the sphere $x^2 + y^2 + z^2 \le 1$.

(ii) Using a double integral, prove that the relation $B(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$, m, n > 0. 5+5

- (d) (i) Verify Stoke's theorem for the function $\vec{F} = x^2 i xyj$ integrated round the square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a, y = a.
 - (ii) Prove that $\iint \left[2a^2 2a(x+y) (x^2 + y^2) \right] dxdy = 8\pi a^4$, the region of integration being the interior of the circle $x^2 + y^2 + 2a(x+y) = 2a^2$. 6+4
- (e) (i) Evaluate $\iint_{S} \overline{A} \cdot \hat{n} \, ds$; $\overline{A} = 2yi zj + x^{2}k$ over the surface S of the bounded by the parabolic cylinder $y^{2} = 8x$, in the first octant bounded by the plane y = 4 and z = 6. 7
 - (ii) Find the directional derivative of $f(x, y) = 2x^2 xy + 5$ at (1, 1) in the direction of unit vector $\left(\frac{3}{5}, -\frac{4}{5}\right)$.

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

4th Semester

MATHEMATICS

PAPER-C10T

RING THEORY & LINEAR ALGEBRA - I

Full Marks : 60

Time : 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *four* questions. 4×15

- **1.** (a) Let S be the set of all twice differentiable real-valued functions on \mathbb{R} having second derivative zero at x = 0. Does $(S, +, \cdot)$ form a ring, where (f+g)(x) = f(x) + g(x) and $(f \cdot g)(x) = f(x)g(x)$ for all $x \in \mathbb{R}$ and $f, g \in S$?
 - (b) Give an example (with reason) of a left ideal of a ring which is not a right ideal.
 - (c) Find all homomorphisms from the ring \mathbb{Z} onto itself. Prove that $(\mathbb{Z}, +, \cdot)$ is not isomorphic with $(2\mathbb{Z}, +, \cdot)$ as rings.

- (d) Let S be the set of all 2×2 real skew-symmetric matrices over \mathbb{R} . Prove that S forms a vector space over R and hence find a basis of S.
- (e) Find a linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ so that ker $T = \{(x, y, z) \in \mathbb{R}^3 | x y z = 0\}$. 2+2+(2+2)+(2+2)+3
- (a) Let R be a ring, x∈R and ⟨x⟩ denote the smallest ideal of R containing
 x. Prove that

$$\langle x \rangle = \{ rx + xs + \sum_{i=1}^{m} s_i xt_i + nx \mid r, s, s_i, t_i \in \mathbb{R}; m \in \mathbb{N}, n \in \mathbb{Z} \}$$

- (b) Let I and J be two ideals of a ring R. Show that $R/(I \cap J)$ is isomorphic to a subring of $R/I \times R/J$.
- (c) Consider the set of vectors $B = \{\beta_1, \beta_2, \beta_3, \dots, \beta_k\}$ in a vector space V over the field F. Prove that B is linearly dependent if and only if at least one of the vectors of the set B can be expressed as a linear combination of the remaining vectors of B.
- (d) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator that maps the basis vectors α , β , γ to $\alpha + \beta$, $\beta + \gamma$, γ , respectively. Show that T is an isomorphism. 5+3+4+3
- **3.** (a) In a commutative ring with identity, prove that every maximal ideal is prime. If the ring lacks the identity, then show that the above result may not be true.
 - (b) Define characteristic of a ring. Give an example of a finite ring whose characteristic is 4.

C/21/BSC/4th Sem/MTMH-C10T

- (c) Let V be the vector space of all 2×2 matrices over the field F. Let W_1 be the subspace of all matrices of the form $\begin{pmatrix} x & -x \\ y & z \end{pmatrix}$ and W_2 be the subspace of all matrices of the form $\begin{pmatrix} a & b \\ -a & c \end{pmatrix}$. Find the dimensions of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$.
- (d) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by T(a, b, c) = (3a, a - b, 2a + b + c).Show that T is invertible. For any $(x, y, z) \in \mathbb{R}^3, T^{-1}(x, y, z)$? (3+1)+(1+2)+4+(2+2)
- **4.** (a) Does there exist an integral domain with 15 elements? Give justification in support of your answer.
 - (b) Find all ring homomorphism from $(\mathbb{Z}_{12},+,\cdot)$ to $(\mathbb{Z}_{30},+,\cdot)$.
 - (c) Let us consider the vector space

$$V = \{A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} | a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{C}, a_{11} + a_{22} = 0\}$$

over the field of real numbers with the usual operations of matrix addition and multiplication of a matrix by a scalar. Find a basis for V and find *dim* V.

(d) Let V be the vector space of all polynomials over \mathbb{R} with degree three or less. Consider the differentiation operator D on V. Then compute the following :

(i) First find the matrix representation of D with respect to the ordered basis $B = \{1, x, x^2, x^3\}$ of V.

(ii) Then consider another basis $B_1 = \{g_1, g_2, g_3, g_4\}$ of V where $g_i(x) = (x+t)^{i-1}$ for all i=1, 2, 3, 4 and for some $t \in \mathbb{R}$. Find the change of basis matrix with respect to B and B_1 .

(iii) Hence find the matrix representation of D with respect to the ordered basis B_1 using the change of basis matrix and the matrix representation of D with respect to the ordered basis B. 3+3+3+(2+2+2)

- **5.** (a) Give example of (i) a ring R and a subring S of R such that 1_R , 1_S both exist but $1_R \neq 1_S$; (ii) a ring R and a subring S of R such that 1_S exists but R does not contain the multiplicative identity.
 - (b) Let R and S be two rings and f: R→S be an epimorphism. Show that if I is an ideal of R then f(I) is an ideal of S. Give an example to show that the result is not true if f is a homomorphism which is not surjective.
 - (c) Find four vectors $\alpha, \beta, \gamma, \delta \in \mathbb{R}^4$ such that $\{\alpha, \beta, \gamma, \delta\}$ is a linearly dependent subset but any three of them are linearly independent.
 - (d) Let V be an n dimensional vector space over the field F and W be an m dimensional vector space over the field F. Then prove that the dimension of the vector space $L(V,W) = \{T: V \rightarrow W | T \text{ is a linear transformation}\}$ is mn by constructing a basis of L(V,W).

(2+2)+(2+2)+3+4

- **6.** (a) Let R be a commutative ring with identity $1_R \neq 0$. Prove that an ideal M of R is maximal if and only if the quotient ring R/M becomes a field.
 - (b) Suppose R is an integral domain and there is a ring homomorphism from \mathbb{Z} onto the integral domain R. Then show that either $R \cong \mathbb{Z}$ or $R \cong \mathbb{Z}_p$ for some prime p.
 - (c) Extend the set $A = \{(1, 1, 1, 1), (1, -1, 1, -1)\}$ to a basis of the vector space \mathbb{R}^4 over \mathbb{R} .
 - (d) Prove that any *n* dimensional vector space over the field *F* is isomorphic with the space F^n over *F*. 4+3+4+4

C/21/BSC/4th Sem/MTMH-C10T

- **7.** (a) Find the field of quotients of the integral domain $\mathbb{Z}[i]$.
 - (b) For a commutative ring R with identity, do R and R[x] always have the same characteristic? Justify your answer.
 - (c) Let V be a vector space over the field F and W be a subspace of V. Show that dim(V/W) = dimV - dimW.
 - (d) Give examples of two linear operators U, T on the vector space \mathbb{R}^2 over \mathbb{R} such that TU = 0 but $UT \neq 0$ where 0 denotes the zero operator. 4+3+5+3
- **8.** (a) Let R be an integral domain with finite number of ideals. Show that R is a field. Hence conclude that finite integral domain is a field.
 - (b) Consider a ring homomorphism f:R→ S where R, S both are commutative rings with identity. If J is a prime ideal of S then is f⁻¹(J) a prime ideal in R? Justify your answer.
 - (c) Let V be the vector space \mathbb{R}^4 over the \mathbb{R} and W be the subspace of V generated by $\{(1, 0, 0, 0), (1, 1, 0, 0)\}$. Find a basis of the quotient space V/W.
 - (d) Prove that for any two linear operators $T: \mathbb{R}^3 \to \mathbb{R}^2$, $S: \mathbb{R}^2 \to \mathbb{R}^3$, ST is neither one-one nor onto.
 - (e) Let U, V, W be three finite dimensional vector spaces over a field F. Let $T:V \rightarrow W$ be a linear transformation and $S:W \rightarrow U$ be an isomorphism. Prove that

dim ker(T) = dim ker(ST).

(3+2)+3+3+2+2

5

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - IV

Subject : MATHEMATICS

Paper : C 10 - T

Ring Theory and Linear Algebra - I

Full Marks : 60

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

- 1. Answer any *five* questions :
 - (a) Let X be any set and R be the power set of X. Does $(R, +, \cdot)$ form a ring where $A + B = A \cup B$ and $A \cdot B = A \cap B$ for all $A, B \in R$.
 - (b) Extend $S = \{(1,1,0), (1,1,1)\}$ to a basis of the vector space \mathbb{R}^3 over \mathbb{R} .
 - (c) Find the total number of units in the ring $M_2(Z_3)$, with usual notations.
 - (d) Let V be a vector space over the field F and W_1 , W_2 be two subspaces of V. Is $W_1 \cup W_2$ a subspace of V?
 - (e) In the ring $M_2(\mathbb{Z})$ of all 2×2 matrices over \mathbb{Z} , check whether the set $\left\{ \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} | a, b \in \mathbb{Z} \right\}$ forms an ideal or not. P.T.O.

2×5=10

- (2)
- (f) Determine the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ over \mathbb{R} such that T sends the vectors (1,0,0), (0,1,0), (0,0,1) to (0,1,0), (0,0,1), (1,0,0), respectively.
- (g) Show that the mapping $f : \mathbb{Z}\sqrt{2} \to M_2(\mathbb{R})$ (where $M_2(\mathbb{R})$ denotes the ring of all 2 × 2 real matrices) defined by $f(a+b\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}$ is a homomorphism of rings.
- (h) Give an example of a linear operator T on a vector space V such that ker T = Im T.

5×4=20

- 2. Answer any *four* questions :
 - (a) Let *I* denote the set of all polynomials in $\mathbb{Z}[x]$ with constant term of the form $4k(k \in \mathbb{Z})$. Show that *I* is an ideal of $\mathbb{Z}[x]$. Is it a prime ideal? Is it a maximal ideal? Give proper justification in support of your answer. 2+2+1=5
 - (b) Let V be a vector space over the field F and $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis for V. Let $\beta \in V$ be a non-null vector such that $\beta = c_1\alpha_1 + c_2\alpha_2 + ... + c_n\alpha_n$ for some $c_1, c_2, ..., c_n \in F$ where $c_k \neq 0$ for some $1 \le k \le n$. Then show that $\{\alpha_1, \alpha_2, ..., \alpha_{k-1}, \beta, \alpha_{k+1}, ..., \alpha_n\}$ is also a basis for V. 5
 - (c) Let (F, +, .) be a field and u(≠0) ∈ F. Define multiplication × in F by a×b=a.u.b
 for a, b ∈ F. Prove that (F, +, ×) is a field.
 - (d) Find a non-identity linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that the T(W) = Wwhere $W = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$.
 - (e) Let R be a ring and S be a non-empty subset of R. Show that $M = \{a \in R \mid ax = 0 \text{ for all } x \in S\}$ is a left ideal of R. Give an example to show that M need not be always an ideal of R. 2+3=5
 - (f) Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(a,b,c) = (a+b,2c-a)for all $(a,b,c) \in \mathbb{R}^3$. Find the matrix representation of *T* relative to the pair of bases $B = \{(1,0,-1),(1,1,1),(1,0,0)\}$ and $B' = \{(0,1),(1,0)\}$. P.T.O.

3. Ans	Answer any <i>three</i> questions :		
(a)	(i)	Let <i>R</i> be the ring of all continuous function from \mathbb{R} to \mathbb{R} . Show that $A = \{ f \in R \mid f(0) = 0 \}$ is a maximal ideal of <i>R</i> .	
	(ii)	Check whether the rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$ is isomorphic.	
	(iii)	Let V be a real vector space with three subspaces P, Q, R satisfying $V = P \cup Q \cup R$. Prove that at least one of P, Q, R must be V itself. 3+3+4=10	
(b)	(i)	Let I and J be two ideals of a ring R . Find the smallest ideal of R containing both I and J .	
	(ii)	Give an example to show that quotient ring of an integral domain is not always an integral domain.	
	(iii)	The matrix of a linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the ordered	
		basis $B = \{(-1,1,1), (1,-1,1), (1,1,-1)\}$ is $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{pmatrix}$. Find the matrix	
		of <i>T</i> with respect to the ordered basis $B_1 = \{(0,1,1), (1,0,1), (1,1,0)\}$.	
		3+2+5=10	
(c)	(i)	Let $S = \{\frac{a}{b} \in \mathbb{Q} \mid \text{gcd} (a, b) = 1 \text{ and } 3 \text{ does not divide } b\}$. Show that <i>S</i> is a	
		ring under usual addition and multiplication of rational numbers. Also	
		prove that $M = \{\frac{a}{b} \in S \mid 3 \text{ divides } a\}$ is an ideal of S and the quotient ring	
		S/M is a field.	
	(ii)	Let <i>V</i> , <i>W</i> be two finite dimensional vector spaces over the same field $F, T: V \to W$ be a linear transformation. Then prove that following are equivalent : (A) <i>T</i> carries each linearly independent subset of <i>V</i> to a linearly independent subset of <i>W</i> . (B) ker $T = \{\theta\}$. (2+2+2)+4=10	

(d) (i) Prove that the ring Z_n is s principal ideal ring.

P.T.O.

- (ii) Find all non-trivial ring homomorphisms from the ring \mathbb{Z}_{12} to the ring \mathbb{Z}_{28} .
- (iii) Let U, V, W be three finite dimensional vector spaces over the field $F, T: V \rightarrow W$ be a linear transformation and $S: W \rightarrow U$ be an isomorphism. Then prove that (A) dim ker $T = \dim \ker ST$ and (B) dim $\operatorname{Im} T = \dim \operatorname{Im} ST$. 3+3+4=10
- (e) (i) In a commutative ring R with unity, then show that an ideal P is a prime ideal if and only if the quotient ring $\frac{R}{P}$ is an integral domain.
 - (ii) Give an example of an infinite ring with finite characteristic.

52

(iii) Let U and W be two subspaces of a vector space V over the field F. Prove that $U \cup W$ is a subspace of V if and only if either $U \subseteq W$ or $W \subseteq U$.

4 + 2 + 4 = 10

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - IV

Subject : MATHEMATICS

Paper : SEC 2 - T

Full Marks : 40

Time : 2 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[GRAPH THEORY]

Group - A

1. Answer any *four* questions :

5×4=20

(a) Let G be a graph of order three with the vertex set $V(G) = \{v_1, v_2, v_3\}$. The adjacency matrix is given below :

 $A(G) = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Show that the graph is disconnected. Draw the graph.

P.T.O.

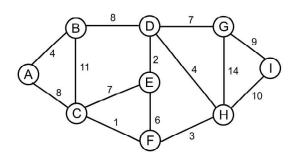
- (b) A connected graph G is an Eulerian graph if and only if every vertex of G has even degree. 5
- (c) Define graphs isomorphism. Check whether the following two graphs are isomorphic or not.
 2+3



- (d) Define Hamiltonian cycle. Draw a graph which is Hamiltonian but not Eulerian. Show that in a complete graph with *n* vertices there are (n - 1) / 2 edge-disjoint Hamiltonian cycles. 2+1+2
- (e) Define a tree. Prove that a tree with *n* vertices has n 1 edges. 1+4
- (f) Define spanning tree of a graph *G*. Show that every connected graph has at least one spanning tree. 1+4

Group - B

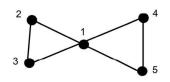
- 2. Answer any *two* questions :
 - (a) Define weighted shortest path between two vertices. Apply Dijkstra's algorithm to the graph given below and find the shortest path from the vertex 0 to the vertex 4.



P.T.O.

10×2=20

- (3)
- (b) Define a weighted graph. Describe Warshall algorithm to find all-pairs shortest paths. 2+8
- (c) Define the root of a rooted tree. Prove that there is one and only one path between every pair of vertices in a tree. Draw all spanning trees from the following graph. 1+3+6



(d) Define an Eulerian graph. Write a short note on travelling salesman's problem. Prove that a simple (having no self-loops and parallel edges) graph with n vertices and k components can have at most (n - k)(n - k + 1)/2 edges. 1+3+6

OR

[COMPUTER GRAPHICS]

- 1. Answer any *four* questions :
 - (a) Discuss raster scan approach.
 - (b) Explain the concept of Pixel, Aspect Ratio, and Resolution.
 - (c) Describe CMYK Color Model.
 - (d) Briefly discuss the Flood Fill algorithm.
 - (e) What is meant by Anti-Aliasing?
 - (f) Define convex and concave polygon.
- 2. Answer any *two* questions :
 - (a) Consider the line from (0, 0) to (4, 6). Use DDA algorithm to rasterize this line.
 - (b) Discuss Midpoint Circle Drawing algorithm.
 - (c) Explain 2D transformations with its basic types.
 - (d) Write algorithm to clip line using Cohen Sutherland line clipping algorithm.

P.T.O.

5×4=20

10×2=20

(5)

		OP			
OR [OPERATING SYSTEM : LINUX]					
1. Ans	Answer any <i>four</i> questions : 5×4=				
(a)	(i)	What is a partition table?			
	(ii)	Compare multitasking and multiuser OS.	2+3		
(b)	(b) Discuss kernel approach OS structure.				
(c)	Writ	e short note of CPU scheduler.	5		
(d)	(i)	What is scheduling context of process management?			
	(ii)	State the task of fork () and exec () comment?	3+2		
(e)	Disc	suss general characteristics of the Ext3 file system.	5		
(f)	(i)	What are the three main purposes of an OS?			
	(ii)	UNIX is multitasking operating system. Why?	3+2		
2. Answer any <i>two</i> questions : $10 \times 2=20$					
(a)	(i)	Explain demand paging.			
	(ii)	There is no external fragmentation in paging. Why?			
	(iii)	Compare paging and segmentation scheme.	4+2+4		
(b)	(i)	What is a virtual memory?			
	(ii)	Explain Belady's anomaly with example.			
	(iii)	What is the functionality of "pipes" in shell?	2+6+2		
(c)	(i)	What is cooperating process?			
	(ii)	Compare shared memory system and message passing system communication model.	in process		
	(iii)	Compare process and thread.			
			P.T.O.		

